
Inferring models with rule-based expert systems.

⇤

William Durand
LIMOS - UMR CNRS 6158

Blaise Pascal University, France
william.durand@isima.fr

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

sebastien.salva@udamail.fr

ABSTRACT
Many works related to software engineering rely upon for-
mal models, e.g., to perform model-checking or automatic
test case generation. Nonetheless, producing such mod-
els is usually tedious and error-prone. Model inference is
a research field helping in producing models by generating
partial models from documentation or execution traces (ob-
served action sequences). This paper presents a new model
generation method combining model inference and expert
systems. It appears that an engineer is able to recognise the
functional behaviours of an application from its traces by
applying deduction rules. We propose a framework, applied
to Web applications, simulating this reasoning mechanism,
with inference rules organised into layers. Each yields par-
tial IOSTSs (Input Output Symbolic Transition Systems),
which become more and more abstract and understandable.

Keywords
Model inference, automatic testing, IOSTS, expert system

1. INTRODUCTION AND CONTRIBUTION
Software engineering is a disciple helping to design, imple-

ment and validate applications by means of a lot of dedicated
methods and tools. Many of them require either some doc-
umentation or models to automate or, at least, ease some
steps. For instance, model-based testing approaches rely
upon formal models to define test relation and to auto-
matically construct test cases. Nonetheless, writing com-
plete documentation or formal models is often a tedious and
error-prone task. That is why lightweight models are usually
found in the Industry. This leads to several issues, e.g., the
toughness of validating an application with a good test cov-
erage or the di�culty to diagnose its failures, and to main-
tain it since this one is poorly documented. The ultimate

⇤Research conducted in collaboration with industrial part-
ner Michelin.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SoICT ’14 December 04 - 05 2014, Hanoi, Viet Nam
Copyright 2014 ACM 978-1-4503-2930-9/14/12$15.00
http://dx.doi.org/10.1145/2676585.2676615

alternative, usually left to developers, is to learn how the
application behaves before introducing changes on it.

Model inference is a research field which brings interesting
concepts to bypass these issues. It aims at retrieving mod-
els, expressing functional behaviours of applications which
already exist or which are under development. These mod-
els, that help understand how an application behaves, are
generated from execution traces (observed action sequences)
or from documentation. These can be exploited to auto-
matically generate test cases, but could also be considered
as drafts to write complete specifications. Although this
area sounds promising, it still exposes several open prob-
lems, which require further investigation. Among them, the
model generation may lead to a state space explosion prob-
lem. Some works construct lightweight models to avoid this
issue, others yield extrapolated models by merging applica-
tion’s states which, of course, express more behaviours than
those observed [10, 5].

Our proposal takes another direction to infer models. First,
we do not suppose that the application being analysed is
event-driven, only that it yields traces. Intuitively, our pro-
posal emerges from the following idea: a human expert, who
is able to conceive specifications, is also able to diagnose the
behaviours of the corresponding implementation by reading
and interpreting its execution traces. His knowledge could
then be formalised and exploited to automatically infer mod-
els. Our approach is based upon this notion of knowledge
implemented with an expert system which includes busi-
ness rules. Such rules aim at analysing the behaviours of
the application and incrementally produce models captur-
ing the application’s behaviours at a higher level of abstrac-
tion. These models are tangentially reduced in term of size
without improper extrapolation. In this paper, we focus on
models called Input/Output Symbolic Transition Systems
(IOSTS) [8].

Paper organisation: below, we briefly present some re-
lated works and describe the architecture of our model gen-
eration framework. Then, we recall some definitions on the
IOSTS formalism used throughout the paper. We concretely
describe and define this framework in the context of Web
applications in Section 3. We give some experimentation
results in Section 4. Conclusions are drawn in Section 5
together with directions for further research and improve-
ments.

1.1 Related work
Model inference is a relatively recent research field which

originates from works of di↵erent nature. Below, we present
some of them that are related to our work.

Zong et al. [16] proposed to infer specifications from API
documentation in order to check whether implementations
match them. Such specifications do not reflect the imple-
mentation behaviour though. Furthermore, this method can
only be applied if the API documentation is written in a
readable format.

Most of the other methods aims at observing the appli-
cation’s behaviours at runtime. Some of them are proposed
in the context of white-box testing. In [13], specifications,
which are extremely detailed, show the method calls ob-
served from a related set of objects. The methods, presented
in [2, 4], exercise Mobile and Web applications written in
PHP. They rely upon concolic testing to explore symbolic
execution paths of the application and to detect bugs. These
white-box approaches could theoretically o↵er a better code
coverage than black-box automatic testing. However, the
number of paths being explored concretely limits to short
paths only. Furthermore, the constraints have not to be too
complex in order to be solved. Last but not least, the models
are too detailed for reading.

On the other hand, other methods [11, 12, 1, 6, 9, 15, 5],
which originate from automatic black-box testing, retrieve
specifications of event-driven applications (Desktop, Web or
Mobile) by exploring them (a.k.a. crawling). In practice,
the obtained models should encompass all the observed ac-
tions performed by the implementation. But, to avoid a
state explosion problem and to ease the understanding of
the application’s behaviours, only the three main leads have
been explored to reduce the model size. Some works [11,
1, 9] proposed to generate simplified trees, depicting the
observed GUI of the application. Mesbah et al. [12] pro-
posed the tool Crawljax specialised in Ajax applications. It
produces a state machine model to capture the changes of
the DOM structures of HTML documents. But here, state
abstractions have to be manually given. Also, some works
[5] rely upon standard learning algorithms such as L* [3],
but this technique leads to extrapolated models, potentially
describing incorrect behaviours.

1.2 Insight

Figure 1: Model generation framework

Our proposal takes another direction by inferring several
models (and not only one), expressing the behaviours of the
same application at di↵erent abstraction levels by leveraging

an expert system.
We focus on Web applications in this paper, altough this

approach could be applied on any application producing
traces. Thanks to its design, our framework supports any
kind of Web applications, including Single Page Applica-
tions.

The approach is divided into several modules as depicted
in Figure 1. The Models generator is the centrepiece of this
framework. It takes traces as inputs, which can be sent by a
Monitor collecting them on the fly. But it is worth mention-
ing that the traces can also be sent by any tool or even any
user, as far as they comply to a chosen standard format. The
Models generator is based upon an expert system, which is
an artificial intelligence engine emulating acts of a human
expert by inferring a set of rules representing his knowledge.
Such knowledge is organised into a hierarchy of several lay-
ers. Each one gathers a set of inference rules written with
a first order logic. Typically, each layer creates an IOSTS,
and the higher the layer is, the more abstract the IOSTS
becomes. Models are then stored and can be later analysed
by experts, verification tools, etc. The number of layers is
not strictly bounded even though it is manifest that it has
to be finite.

The Models generator relies upon traces to construct IOS-
TSs, but the given trace set may not be substantial enough
to generate relevant IOSTSs. More traces could be yet col-
lected as far as the application being analysed is an event-
driven application. Such traces can be produced by stim-
ulating and exploring the application with automatic test-
ing. In our approach, this exploration is achieved by the
Robot explorer. In contrast with most of the existing crawl-
ing techniques [11, 2, 12, 1, 15], our robot does not cover the
application in blind mode or with a static traversal strategy.
Instead, it is cleverly guided by the Models generator which
applies an exploration strategy carried out by rules. This
involves the capture of new traces by the Monitor or by the
Robot explorer which returns them to the Models genera-
tor, and so on, as described in [14]. The advantages of this
approach are manifold:

• it takes a predefined set of traces collected from any
kind of applications producing traces. In the context
of Web applications, traces can be produced using au-
tomatic testing,

• the application exploration is guided with a strategy
which can be modified according to the type of appli-
cation being analysed. This strategy o↵ers the advan-
tage of directly targeting some states of the application
when its state number is too large for being traversed
in a reasonable processing time,

• the knowledge encapsulated in the expert system can
be used to cover trace sets of several applications be-
longing to the same category with generic rules,

• but, the rules can also be specialised and refined for
one application to yield more precise models. This is
interesting for application comprehension,

• our approach is both flexible and scalable. It does not
produce one model but several ones, depending on the
number of layers of the Models generator, which is not
limited and may evolve in accordance to the applica-
tion’s type. Each model, expressing the application’s

behaviours at a di↵erent level of abstraction, can be
used to ease the writing of complete formal models, to
apply verification techniques, to check the satisfiabil-
ity of properties, to automatically generate functional
test cases, etc.

In the following, we focus on the Models generator in the
context of Web applications, which is the centrepiece of our
framework. It is worth mentioning that the Monitor is here a
classical HTTP proxy, hence the support of any kind of Web
applications, and generally speaking, any system producing
traces.

2. MODEL DEFINITION AND NOTATIONS
We shall consider the input/output Symbolic Transition

System (IOSTS) formalism [8] for describing the functional
behaviour of systems or applications. An IOSTS is a kind of
automata model which is extended with two sets of variables,
internal variable to store data, and parameters to enrich the
actions. Transitions carry actions, guards, and assignments
over variables. The action set can be divided into two sub-
sets: one containing inputs beginning by ? to express actions
expected by the system, and another containing outputs be-
ginning by ! to express actions produced by the system. An
IOSTS does not have states but locations.

Definition 1 (IOSTS) An IOSTS S is a tuple < L, l0, V,
V 0, I,⇤, !>, where:

• L is the finite set of locations, l0 the initial location,

• V is the finite set of internal variables, I is the finite
set of parameters. We denote Dv the domain in which
a variable v takes values. The assignment of values
of a set of variables Y ✓ V [I is denoted by valua-
tions where a valuation is a function v : Y ! D. v;
denotes the empty valuation. DY stands for the valua-
tion set over the variable set Y . The internal variables
are initialised with the assignment V 0 on V , which is
assumed to be unique,

• ⇤ is a finite set of symbolic actions a(p), with p =
(p1, ..., pk) a finite list of parameters in Ik(k 2 N). p
is assumed unique. ⇤ = ⇤I [⇤O [{!�}: ⇤I represents
the set of input actions, ⇤O the set of output actions,
and � the quiescence,

• ! is the finite transition set. A transition (li, lj , a(p),
G,A), from the location li 2 L to lj 2 L, denoted

li
a(p),G,A������! lj is labelled by: an action a(p) 2 ⇤, a

guard G over (p [V [T (p [V)) which restricts the
firing of the transition. T (p [V) is a set of functions
that return boolean values only (a.k.a. predicates) over
p[V , an assignment function A which updates internal
variables. A is on of the form (x := Ax)x2V , where Ax

is an expression over V [p [T (p [V).

An IOSTS is also associated with an IOLTS (Input/Out-
put Labelled Transition System) to formulate its semantics.
Intuitively, IOLTS semantics correspond to valued automata
without symbolic variable, which are often infinite: IOLTS
states are labelled by internal variable valuations while tran-
sitions are labelled by actions and parameter valuations.
The semantics of an IOSTS S =< L, l0, V, V0, I,⇤,!> is

the IOLTS JSK =< Q, q0,⌃,!> composed of valued states
in Q = L ⇥ DV , q0 = (l0, V0) is the initial one, ⌃ is the
set of valued symbols and ! is the transition relation. The
IOLTS semantics definition can be found in [8]. In short,

for an IOSTS transition l1
a(p),G,A������! l2, we obtain an IOLTS

transition (l1, v)
a(p),✓����! (l2, v

0) with v a set of valuations
over the internal variable set, if there exists a parameter
valuation set ✓ such that the guard G evaluates to true with
v[✓. Once the transition is executed, the internal variables
are assigned with v0 derived from the assignment A(v [✓).
Runs and traces of an IOSTS can now be defined from its
semantics:

Definition 2 (Runs and traces) For an IOSTS S = <
L, l0, V, V 0, I,⇤,!>, interpreted by its IOLTS semantics
JSK =< Q, q0,⌃,!>, a run of S, q0↵0q1...qn�1↵n�1qn is
a sequence of terms qi↵iqi+1 with ↵i 2 ⌃ a valued action
and qi, qi+1 two states of Q. Run(S) = Run(JSK) is the set
of runs found in JSK.

It follows that a trace of a run r is defined as the projection
proj⌃(r) on actions. TracesF (S) = TracesF (JSK) is the set
of traces of all runs finished by states in F ⇥DV .

3. MODEL INFERENCE

Figure 2: Models generator

The Models generator is mainly composed of a rule-based
expert system, adopting a forward chaining. Such a system
separates the knowledge base from the reasoning: the former
is expressed with data a.k.a. facts and the latter is realised
with inference rules that are applied on the facts. Our Mod-
els generator initially takes traces as an initial knowledge
base and owns inference rules organised into layers for try-
ing to fit the human expert behaviour. These layers are
depicted in Figure 2.

Usually, when a human expert has to read traces of an ap-
plication, he often filters them out to only keep those which
make sense against the current application. This step is
done by the first layer whose role is to format the received
raw traces into sequences of valued actions and to delete
those considered as unnecessary. The implementation of this
layer depends on the nature of the input traces. The result-
ing structured trace set, denoted ST , is then given to the
next layer. This process is incrementally done, i.e. every

time new traces are given to the Models generator, these
are formatted and filtered before being given to Layer 2.
The remaining layers yield an IOSTS each Si(i � 1), which
has a tree structure derived from the traces. The role of
Layer 2 is to carry out a first IOSTS transformation from
the structured traces. The next layers 3 to N (with N a finite
integer) are composed of rules that emulate the ability of a
human expert to simplify transitions, to analyse the transi-
tion syntax for deducing its meaning in connection with the
application, and to construct more abstract actions that ag-
gregate a set of initial ones. Theses deductions are often not
done in one step. This is why the Models generator supports
a finite but not defined number of layers. Each of these lay-
ers i takes the IOSTS Si�1 given by the direct lower layer.
This IOSTS, which represents the current base of facts, is
analysed by the rules to infer another IOSTS whose expres-
siveness is more abstract than the previous one. We state
that the lowest layers (at least Layer 3) should be composed
of generic rules that can be reused on several applications
of the same type. In contrast, the highest layers should own
the most precise rules that may be dedicated to one specific
application.

For readability purpose, we chose to represent inference
rules with this format: When conditions on facts Then ac-
tions on facts (format taken by the Drools inference engine
1). Independently on the application’s type, Layers 2 to
N handle the following fact types: Location which repre-
sents an IOSTS location, and Transition, which represents
an IOSTS transition, composed of two Locations Linit, Lfi-
nal, and two data collections Guard and Assign. Now, it is
manifest that the inference of models has to be done in a
finite time and in a deterministic way. To reach that pur-
pose, we formulate the following hypotheses on the inference
rules:

1. (finite complexity): a rule can only be applied a limited
number of times on the same knowledge base,

2. (soundness): the inference rules are Modus Ponens
(simple implications that lead to sound facts if the
original facts are true: If P, then Q. P. Therefore, Q.),

3. (no implicit knowledge elimination): after the appli-
cation of a rule r expressed by the relation r : Ti !
Ti+1(i � 2), with Ti a Transition base, for all transi-
tion t = (ln, lm, a(p), G,A) extracted from Ti+1, ln is
reachable from l0.

In the following, we detail these layers in the context of
Web applications while giving some rule examples.

3.1 Layer 1: Trace filtering
Traces of Web applications are based upon the HTTP

protocol, conceived in such a way that each HTTP request
is followed by only one HTTP response. Consequently, the
traces, given to Layer 1, are sequences of couples (HTTP re-
quest, HTTP response). This layer begins formatting these
couples so that these can be analysed in a more convenient
way.

For a couple (HTTP request, HTTP response), we extract
the following information: the HTTP verb, the target URI,
the request content which is a collection of data (headers,
content) and the response content which is the collection

1http://www.jboss.org/drools/

(HTTP status, headers, response content). A header may
also be a collection of data or may be null. Contents are texts
e.g., HTML texts. Since we wish translating such traces into
IOSTSs, we turn these textual items into a structured valued
action (a(p), ✓) with a the HTTP verb and ✓ a valuation
over the variable set p = {URI, request, response}. This is
captured by the following proposition:

Definition 3 (Structured HTTP Traces) Let t = req1,
resp1, ..., reqn, respn be a raw HTTP trace composed of
an alternate sequence of HTTP request reqi and HTTP re-
sponse respi. The structured HTTP trace � of t is the se-
quence (a1(p), ✓1)...(an(p), ✓n) where:

• ai is the HTTP verb used to make the request in reqi,

• p is the parameter set {URI, request, response},

• ✓i is a valuation p ! Dp which assigns a value to each
variables of p. ✓ is deduced from the values extracted
from reqi and respi.

The resulting trace set derived from raw HTTP traces is de-
noted ST .

Now, structured traces can be filtered. For a main re-
quest performed by a user, many other sub-requests are also
launched by a browser in order to fetch images, CSS and
JavaScript files. Generally speaking, these do not enlighten
a peculiar functional behaviour of the application. This is
why we propose to add rules in Layer 1 to filter these sub-
requests out from the traces. Such sub-requests can be iden-
tified by di↵erent ways, e.g., by focussing on the file exten-
sion found at the end of the URI, or on the Content-type
value of the request headers. Consequently, we created a
set of rules, constituted of conditions on the HTTP content
found in an action, that remove valued actions when the
condition is met. A straightforward rule example, which re-
moves the actions relative to the retrieval of PNG images,
is given in Figure 3.

rule "Filter PNG images"
when

\$va: Get(request.mime_type = ’png’ or
request.file_extension = ’png’)

then
retract(\$va);

end

Figure 3: Filtering rule example

After the instantiation of the Layer 1 rules, we obtain
a formatted and filtered trace set ST composed of valued
actions. Now, we are ready to extract the first IOSTS.

Completeness, soundness, and complexity: HTTP
traces are sequences of valued actions modelled with posi-
tive facts. Typically, they form Horn clauses. Furthermore,
inference rules are Modus Ponens (soundness hypothesis).
Consequently, Layer 1 is sound and complete. Keeping in
mind the finite complexity hypothesis, its complexity is pro-
portional to Om(k + 1) with m the valued action number
and k the rule number. (at worst, every action is covered
k + 1 times).

3.2 Layer 2: IOSTS transformation
Intuitively, the IOSTS transformation relies upon the IOLTS

semantics transformation that is achieved in a backward
manner. In order to generate the first IOSTS denoted S1,
the associated runs are first computed from the structured
traces by injecting states between valued actions.

These steps are detailed below:

3.2.1 Traces to runs
Given a trace �, a run r is firstly derived by constructing

and injecting states on the right and left sides of each valued
action of �. Keeping in mind the IOLTS semantics defini-
tion, a state shall be modelled by the couple ((URI, k), v;)
with v; the empty valuation. (URI, k) is a couple composed
of a URI and of an integer (k � 0). Typically, a couple
(URI, k) shall be a location of the future IOSTS. All the
runs r of SR start with the same state (l0, v;). Then, a run
is constructed by incrementally covering one trace: for an
action actions (ai, ✓i) found in a trace, we extract the valu-
ation URI = val from ✓i giving the URI value of the next
resource reached after the action ai.And we complete the
current run r with (ai, ✓i) followed by the state ((val, k), v;).
Since we wish to preserve the sequential order of the actions
found in the traces, when a URI previously encountered is
once more detected, the resulting state is composed of the
URI accompanied with an integer k, which is incremented
to yield a new and unique state. Due to lack of room, the
algorithm translating the structured traces into a run set is
not provided in this paper but can be found in [14].

3.2.2 IOSTS generation
The first IOSTS S1 is derived from the run set SR in which

runs are disjoint except for the initial state (l0, v;). Intu-
itively, traces are translated into IOSTS paths that are as-
sembled together (IOSTS disjoint union). The IOSTS forms
a tree composed of paths, each expressing one trace, starting
from the same initial location.

Definition 4 Given a run set SR, the IOSTS S1 is called
the IOSTS tree of SR and corresponds to the tuple < LS1 , l0S1 ,
VS1 , V 0S1 , IS1 ,⇤S1 ,!S1> such that:

• LS1 = {li | 9r 2 SR, (li, v;) is a state found in r},

• l0S1 is the initial location such that 8r 2 SR, r starts
with (l0S1 , v;),

• VS1 = ;, V 0S1 = v;,

• ⇤S1 = {ai(p) | 9r 2 SR, (ai(p), ✓i) is a valued action
in r},

• !S1 is defined by the following inference rule applied
on every element r 2 SR:

si(ai(p), ✓i)si+1 is a term of r, si = (li, v;),

si+1 = (li+1, v;), Gi =
^

(x
i

=vi)2✓
i

xi == vi

`
li

a
i

(p),G
i

,(x:=x)
x2V�������������!S1 li+1

Here, locations could be merged to reduce the IOSTS
size with the classical learning algorithms based upon L*
[3, 10]. Nonetheless, these would create an extrapolation of

this IOSTS. We prefer rejecting such a solution to preserve
the trace equivalence of the IOSTS S1 against the struc-
tured trace set ST before applying inference rules. Instead,
we propose to use a minimisation technique.

3.2.3 IOSTS minimisation
This IOSTS tree can be reduced in term of location size by

applying a bisimulation minimisation technique which still
preserves the functional behaviours expressed in the original
model. Intuitively, this minimisation constructs the state
sets (blocks) that are bisimilar equivalent. Two states are
said bisimilar equivalent, denoted q ⇠ q0 i↵ they simulate
each other and go to states from where they can simulate
each other again. Due to lack of room, we only refer to the
bisimulation minimisation algorithm of [7].

When receiving new traces from the Monitor, the model
yield by this layer is not fully regenerated, but rather com-
pleted on the fly. New traces are translated into IOSTS
paths that are disjoint from S1 except from the initial loca-
tion. We perform an union between S1 and IOSTS paths.
Then, the resulting IOSTS is minimised.

Completeness, soundness, complexity: Layer 2 takes
any structured trace set obtained from HTTP traces. If the
trace set is empty then the resulting IOSTS S1 has a sin-
gle location l0. A structured trace set is translated into
an IOSTS in finite time: every valued action of a trace is
covered once to construct states, then every run is lifted
to the level of one IOSTS path starting from the initial lo-
cation. Afterwards, the IOSTS is minimised with the al-
gorithm presented in [7]. Its complexity is proportional to
O(mlog(m+ 1)) with m the number of valued actions. The
soundness of Layer 2 is based upon the notion of traces: an
IOSTS S1 is composed of transition sequences derived from
runs in SR, itself obtained from the structured trace set ST .
As defined, the behaviours encoded in ST and S1 are equiva-
lent since ordered runs are transformed into ordered IOSTS
sequences.

For sake of readability, we do not provide here the rules of
Layer 2, which match the above definitions and algorithms.
Instead, we illustrate an IOSTS generation example below:

Example 3.1 We take as example a trace obtained from
the GitHub Web site 2 after having executed the following
actions: login with an existing account, choose an existing
project, and logout. These few actions already produced a
large set of requests and responses. Indeed, a web browser
sends thirty HTTP requests on average in order to display
a GitHub page. The trace filtering from this example re-
turns the following structured traces where the request and
response parts are concealed for readability purpose:

1 GET(h t tp s : // github . com/)
GET(h t tp s : // github . com/ l o g i n)

3 POST(h t tp s : // github . com/ s e s s i o n)
GET(h t tp s : // github . com/)

5 GET(h t tp s : // github . com/wi l ldurand)
GET(h t tp s : // github . com/wi l ldurand /Geocoder)

7 POST(h t tp s : // github . com/ logout)
GET(h t tp s : // github . com/)

After the application of Layer 2, we obtain the IOSTS
of Figure 4. Locations are labelled by the URI found in
the request and by an integer to keep the tree structure
of the initial traces. Actions are composed of the HTTP
verb enriched with the variables URI, request, and response.

2https://github.com/

This IOSTS exactly reflects the trace behaviour but is still
di�cult to interpret. More abstract actions shall be deduced
by the next layers.

Figure 4: IOSTS S1

3.3 Layers 3-N: IOSTS abstraction
As stated earlier, the rules of the upper layers analyse

the transitions of the current IOSTS for trying to enrich its
semantics while reducing its size. Given an IOSTS S1, every
next layer carries out the following steps:
1. apply the rules of the layer and infer a new knowledge
base (new IOSTS Si, i � 2),
2. apply a bisimulation minimisation,
3. store the resulting IOSTS.

Without loss of generality, we now restrict the rule struc-
ture to keep a link between the generated IOSTSs. Thereby,
every rule of Layer i (i � 3) either enriches the sense of the
actions (transition per transition) or aggregates transition
sequences into one unique new transition to make the re-
sulting IOSTS more abstract. It results in an IOSTS Si

exclusively composed of some locations of the first IOSTS
S1. Consequently, for a transition or path of Si, we can still
retrieve the concrete path of S1. This is captured by the
following proposition:

Proposition 5 Let S1 be the first IOSTS generated from
the structured trace set ST . The IOSTS Si(i > 1) produced
by Layer i has a location set LS

i

such that LS
i

✓ LS1 .

Completeness, soundness, complexity: the knowl-
edge base is exclusively constituted by (positive) Transition
facts that have a Horn form. The rules of these layers are
Modus Ponens (soundness hypothesis). Therefore, these in-
ference rules are sound and complete. Furthermore, a be-
haviour encoded in an IOSTS Si cannot be lost in Si. With
regards to the (no implicit knowledge elimination) hypoth-
esis and to Proposition 5, the transitions of Si are either
unchanged, enriched or combined together into a new tran-
sition. The application of these layers ends in a finite time
((finite complexity) hypothesis) and the complexity of each
is proportional to Om(k) with m the transition number and
k the rule number.

In the following, we detail two layers specialised for Web
applications:

3.3.1 Layer 3
As stated in Section 1.2, Layer 3 should correspond to

a set of generic rules that can be applied on a large set of
applications belonging to the same category. This layer has
two roles:

• the enrichment of the meaning captured in transitions.
In this step, we have chosen to mark the transitions
with new internal variables. These shall help deduce
more abstract actions in the upper layers. For exam-
ple, the rules depicted in Figure 5 aims at recognising
the receipt of a login or logout page. The first rule
means that if the response content, which is received
after a request sent with the GET method, contains a
login form, then this transition is marked as a ”login
page”with the assignment on the variable isLoginPage,

• the generic aggregation of some successive transitions.
Here, some transitions (two or more) are analysed in
the conditional part of the rule. When the rule con-
dition is met then the successive transitions are re-
placed by one transition carrying a new action. The
rule of Figure 6 corresponds to a simple transition ag-
gregation. It aims at recognising the successive send-
ing of information with a POST request followed by
a redirection to another Web page. If a request sent
with the POST method has a response identified as
a redirection, (identified by the status code 301 or
302), and a GET request comes after, both transitions
are reduced into a single one carrying the new action
PostRedirection.

Example 3.2 When we apply these rules on the IOSTS
example of Figure 4, we obtain a new IOSTS illustrated in
Figure 7. Its size is reduced since it has 6 transitions instead
of 8 previously. However, this new IOSTS does not clearly
reflect the initial scenario yet. Rules deducing more abstract
actions are required. These are found in the next layer.

3.3.2 Layer 4
This layer aims to infer a more abstract model composed

of more expressive actions and whose size should be reduced.
Its rules may have di↵erent forms:

rule "Identify Login Page"
when

$t: Transition(Action == GET, Guard.
response.content contains(’login-form’))

then
modify ($t) { Assign.add("isLoginPage:=true") }

end

rule "Identify Logout Request"
when

$t: Transition(Action == GET, Guard.
uri matches("/logout"))

then
modify ($t1) { Assign.add("isLogout:=true") }

end

Figure 5: Login and Logout page recognition rules

rule "Identify Redirection after a Post"
when

$t1: Transition(Action == POST and
(Guard.response.status = 301 or Guard.response.
status = 302) and $l1final := Lfinal)

$t2: Transition(Action == GET, linit == $l1final,
$l2linit:=Linit)

not (Transition (Linit == $l2linit))
then

insert(new Transition("PostRedirection", Guard(
$t1.Guard, $t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Figure 6: Simple aggregation

• they can be applied on one transition only. In this case,
the rule replaces the transition action to add more
sense to the action. The rule of Figure 8 is an example
which recognises a user de-authentication and adds a
new action ”Deauthentication”. This rule means that
if a PostRedirection action is triggered against a ”Lo-
gout” endpoint (given by the variable isLogout added
by Layer 3), then this is a deauthentication,

• the rules can also aggregate several successive transi-
tions up to complete paths into one transition labelled
by a more abstract action. For instance, the rule il-
lustrated in Figure 9 recognises a user authentication
thanks to the variable ”isLoginPage” added by Layer
3. This rule means that if a ”Login” page is displayed,
followed by a redirection triggered by a POST request,
then this is an authentication step, and the two tran-
sitions are reduced into a single one composed of the
action ”Authentication”.

Other rules can also be application-specific, so that these
bring specific new knowledge to the model. For instance,
the GitHub Web application has a dedicated URL grammar
(a.k.a. routing system). GitHub users own a profile page
that is available at: https://github.com/{username} where
{username} is the nickname of the user. However, some
items are reserved e.g., edu and explore. The rule given
in Figure 10 is based upon this structure and produces a
new action ”Showprofile” o↵ering more sense. Similarly, a
GitHub page describing a project has a URL that always

Figure 7: IOSTS S2

rule "Identify Deauthentication"
when

$t: Transition(action == PostRedirection,
Assign contains "isLogout:=true")

then
modify ($t) (setAction "Deauthentication"));

end

Figure 8: Deauthentication recognition rule

matches the pattern: https://github.com/{username}/{proj
ect name}. The rule of Figure 11 captures this pattern and
derives a new action named ”ShowProject”.

Example 3.3 The application of the four previous rules
leads to the final IOSTS depicted in Figure 12. Now, it
can be used for application comprehension since most of
its actions have a precise meaning and clearly describe the
application’s behaviours.

3.4 Strategy layer
Rather than using a static traversal strategy as in [11, 2,

12, 1, 15], we propose the addition of an orthogonal layer
in the Models generator to describe any kind of exploration
strategy by means of rules.

The simplified Algorithm of the Strategy layer is given
in Algorithm 1. The latter applies the rules on any stored
IOSTS Si. It emerges a location list Loc that are marked
with ”explored” by the rules to avoid re-using them twice
(line 4). Then, the algorithm goes back to the first gener-
ated IOSTS S1 in order to extract one complete and exe-
cutable path p ended by a location l of Loc (line 7). This

rule "Identify Authentication"
when

$t1: Transition(Action == GET,
Assign contains "isLoginPage:= true",

$t1final:=Lfinal)
$t2: Transition(Action == PostRedirection,

Linit == $t1lfinal, $t2linit:=Linit)
not (Transition (Linit == $t2linit))

then
insert(new Transition("Authentication",

Guard($t1.Guard,$t2.Guard), Assign($t1.Assign,
$t2.Assign), $t1.Linit, $t2.Lfinal);

retract($t1);
retract($t2);

end

Figure 9: Authentication recognition

rule "GitHub profile pages"
when

$t: Transition(action == GET, (
Guard.uri matches "/[a-zA-Z0-9]+$",
Guard.uri not in ["/edu", "/explore"]))

then
modify ($t) (SetAction("Showprofile"));

end

Figure 10: User profile recognition

step is sound since all the locations of Si belong to the loca-
tion set of S1 (Proposition 5). Such an IOSTS preamble is
required by the Robot explorer for trying to reach the loca-
tion l by executing every action of p. The algorithm finally
returns a list of paths List, which is sent to the Robot ex-
plorer. The exploration ends once all the locations of Si or
of S1 are visited (line 3). The algorithm only returns unex-
plored locations even if, while the execution of the algorithm,
the IOSTS Si has been regenerated several times since the
marked locations are also stored in the set L. Hence, if a
location of Si is chosen a second time by the rules, the algo-
rithm checks if it has been previously visited (line 7).

Algorithm 1: Exploration Strategy

input : IOSTS S1, Si

output: List of preambles
1 L := ; List of explored locations of S1;
2 BEGIN;
3 while L 6= LS1 and L 6= Si do
4 1) Apply the rules on Si and extract a Location List

Loc;
5 Goback to S1;
6 foreach l 2 Loc do
7 if l /2 L then
8 Compute a preamble p from l0S1 which

reaches l;
9 L := L [{l};

10 List := List [{p};

11 END;

The rules of the Strategy layer can encode di↵erent strate-
gies. We propose two examples below:

• classical traversal strategies can still be established.
For example, Figure 13 depicts two rules expressing the

rule "GitHub project pages"
when

$t: Transition(action == GET,
Guard.uri matches "/[a-zA-Z0-9]+/.+$" $uri:=Guard.uri)

then
String s=ParseProjectName($uri);
modify ($t) (SetAction("Showproject")
Assign.add("ProjectName:="+s));

end

Figure 11: Project choice recognition

Figure 12: IOSTS S3

choice the next location to explore in a breadth-wise
order first. First, the initial location l0 is chosen and
marked as explored (rule BFS). Then, the transitions
having an initial location marked as explored and a
final location not yet explored are collected by the rule
BFS2, except for the transitions carrying an HTTP
error (response status upper or equal to 400). These
locations are marked as explored in the IOSTS Si with
the method SetExplored in the ”then” part of the rule,

• a semantic-driven strategy could also be applied, when
the meaning of some actions is recognisable. For in-
stance, for e-commerce applications, the login step and
the term ”buy” are usually important. Thereby, a
strategy targeting firstly the locations of transitions
carrying theses actions can be defined by the rule
”semantic-driven strategy” of Figure 14. It is mani-
fest that the semantic-driven strategy domain can be
tremendously vast since it depends on the number of
recognised actions and on their relevance.

4. EXPERIMENTATION
The framework presented in Section 1.2 has been im-

plemented in a prototype tool called Autofunk (Automatic
Functional model inference). A user interacts with Auto-
funk through a Web interface and either gives a URL or

rule "BFS"
when
$l: Location (name == l0, explored == false)

then
modify ($l) (explored=true);

end

rule "BFS2"
when

$Loc : ArrayList<Location> () from accumulate(
$t : Transition (Guard.response.status >199 &&

Guard.response.status <400 && Linit.explored==
true && Lfinal.explore==false),

init(ArrayList<Transition> Loc=new ArrayList<
Transition>();),

action(Loc.add($t.Lfinal);),
result(Loc));

then
Loc.SetExplored();

end

Figure 13: BFS strategy

rule "semantic-driven strategy"
when

$t: Transition (Assign contains
"isLogin:=true" || Guard.response matches "*buy*")

then
ArrayList Loc = new ArrayList();
Loc.add($t.Linit, $t.Lfinal);
Loc.SetExplored();

end

Figure 14: Semantic-driven strategy

a file containing traces. These have to be stored in the
HTTP Archive (HAR) format as it is the defacto standard
to describe HTTP traces, used by various HTTP related
tools. Such traces can be obtained from many HTTP mon-
itoring tools (Mozilla Firefox or Google Chrome included).
Then, Autofunk produces IOSTS models which are stored in
a database. The last model is depicted in the Web interface.
The JBoss Drools Expert tool has been chosen to imple-
ment the rule-based system. Such an engine leverages Ob-
ject Oriented Programming in the rule statements and takes
knowledge bases given as Java objects (Location, Transition,
GET, POST objects in this work).

The GitHub Web site is an example of application giv-
ing significant results. We recorded a trace set composed of
840 HTTP requests / responses. Then, we applied Auto-
funk on them with a Models generator composed of 5 layers
gathering 18 rules whose 3 are specialised to GitHub. Af-
ter having performed trace filtering (Layer 1), we obtained
a first IOSTS tree composed of 28 transitions. The next 4
layers automatically infer a last IOSTS tree S4 composed
of 12 transitions from which 9 have a clear and intelligible
meaning.

5. CONCLUSION
This paper presents an original approach combining model

inference, expert systems and automatic testing to derive
IOSTSs models. Our proposal yields several models, reflect-
ing di↵erent levels of abstractions of the same application
with the use of inference rules that capture the knowledge
of an expert. The first contribution lies in the flexibility and
scalability brought by the inference rules since they can be

Figure 15: IOSTS S4

applied on several applications or on one application only
when the rules are specific. The whole framework has not
to be re-implemented for each application. Our approach
can be applied on event-driven applications since our frame-
work supports their exploration. Furthermore, it can also be
applied on other application types on condition that these
produce traces.

We designed our framework for Web applications as a
premise. In the future, we intend to apply it on industrial
systems to ease their diagnostics. But this kind of system
brings several issues not yet addressed in the model inference
area. For instance, industrial systems may include asyn-
chronous actions and timed properties. At the moment, our
solution does not yet support this kind of properties. Fur-
thermore, writing rules may be as tough as writing models
in some cases. This is why we are working on a human inter-
face which helps design rules from a trace set example. We
also plan to add a test case generation module for regression
testing.

6. REFERENCES
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana,

S. De Carmine, and A. M. Memon. Using gui ripping
for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 258–261, New York, NY, USA, 2012.
ACM.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, FSE ’12, pages 59:1–59:11, New York,
NY, USA, 2012. ACM.

[3] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87 – 106, 1987.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig,
A. Paradkar, and M. Ernst. Finding bugs in web
applications using dynamic test generation and
explicit-state model checking. Software Engineering,
IEEE Transactions on, 36(4):474–494, 2010.

[5] W. Choi, G. Necula, and K. Sen. Guided gui testing of
android apps with minimal restart and approximate
learning. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented
Programming Systems Languages & Applications,
OOPSLA ’13, pages 623–640, New York, NY, USA,
2013. ACM.

[6] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
Webmate: a tool for testing web 2.0 applications. In
Proceedings of the Workshop on JavaScript Tools,
JSTools ’12, pages 11–15, New York, NY, USA, 2012.
ACM.

[7] J.-C. Fernandez. An implementation of an e�cient
algorithm for bisimulation equivalence. Science of
Computer Programming, 13:13–219, 1989.

[8] L. Frantzen, J. Tretmans, and T. Willemse. Test
Generation Based on Symbolic Specifications. In
J. Grabowski and B. Nielsen, editors, FATES 2004,
number 3395 in Lecture Notes in Computer Science,
pages 1–15. Springer, 2005.

[9] M. E. Joorabchi and A. Mesbah. Reverse engineering
ios mobile applications. In Proceedings of the 2012
19th Working Conference on Reverse Engineering,
WCRE ’12, pages 177–186, Washington, DC, USA,
2012. IEEE Computer Society.

[10] B. Lambeau, C. Damas, and P. Dupont.
State-merging dfa induction algorithms with
mandatory merge constraints. In A. Clark, F. Coste,
and L. Miclet, editors, Grammatical Inference:
Algorithms and Applications, volume 5278 of Lecture
Notes in Computer Science, pages 139–153. Springer
Berlin Heidelberg, 2008.

[11] A. Memon, I. Banerjee, and A. Nagarajan. Gui
ripping: Reverse engineering of graphical user
interfaces for testing. In Proceedings of the 10th
Working Conference on Reverse Engineering, WCRE
’03, pages 260–, Washington, DC, USA, 2003. IEEE
Computer Society.

[12] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through

dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30,
2012.

[13] M. Pradel and T. R. Gross. Automatic generation of
object usage specifications from large method traces.
In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE
’09, pages 371–382, Washington, DC, USA, 2009.
IEEE Computer Society.

[14] S. Salva and W. Durand. Model inference combining
expert systems and formal models. Technical report,
LIMOS, http://sebastien.salva.free.fr/RR-14-04.pdf,
2014. LIMOS Research report RR-14-04.

[15] W. Yang, M. R. Prasad, and T. Xie. A grey-box
approach for automated gui-model generation of
mobile applications. In Proceedings of the 16th
international conference on Fundamental Approaches
to Software Engineering, FASE’13, pages 250–265,
Berlin, Heidelberg, 2013. Springer-Verlag.

[16] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
specifications for resources from natural language api
documentation. Autom. Softw. Eng., 18(3-4):227–261,
2011.

