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Abstract—This paper tackles the problem of testing produc-
tion systems, i.e. systems that run in industrial environments,
and that are distributed over several devices and sensors.
Usually, such systems lack of models, or are expressed with
models that are not up to date. Without any model, the testing
process is often done by hand, and tends to be an heavy and
tedious task. This paper contributes to this issue by proposing
a framework called Autofunk, which combines different fields
such as model inference, expert systems, and machine learning.
This framework, designed with the collaboration of our indus-
trial partner Michelin, infers formal models that can be used as
specifications to perform offline passive testing. Given a large
set of production messages, it infers exact models that only
capture the functional behaviours of a system under analysis.
Thereafter, inferred models are used as input by a passive
tester, which checks whether a system under test conforms
to these models. Since inferred models do not express all the
possible behaviours that should happen, we define conformance
with two implementation relations. We evaluate our framework
on real production systems and show that it can be used in
practice.

Keywords-Model inference, STS, machine learning, produc-
tion system, passive testing, conformance

I. INTRODUCTION

In the industry, building models for production systems,
i.e. large systems that are composed of several heterogeneous
devices, sensors and applications, is a tedious and error-
prone task. Furthermore, keeping such models up to date is
as difficult as designing them. That is why such models are
rarely available, even though they could be leveraged to ease
the testing process, or for root cause analysis when an issue
is experienced in production.

This paper tackles the problem of testing such systems,
without disturbing them, and without having any specifi-
cation. Manual testing is the most popular technique for
testing, but this technique is known to be error-prone as
well. Additionally, production systems are usually composed
of thousands of states (i.e. sets of conditions that exist at a
given instant in time) and production messages, which makes
testing time consuming. For instance, our industrial partner
Michelin is a worldwide tire manufacturer, and designs most
of its factories, production systems, and software by itself.
In a factory, there are different workshops for each step of
the tire building process. At a workshop level, we observe
a continuous stream of products from specific entry points
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(railroad switches) to a finite set of exit points, constituting
production lines. Thousands of production messages are ex-
changed among the industrial devices of the same workshop
every day, allowing some factories to build over 30,000 tires
a day.

In this context, we propose a testing framework for
production systems that is composed of two parts: a model
inference engine, and a passive testing engine. Both have to
be fast and scalable to be used in practice. The main idea
of our proposal is that, given a running production system,
we extract knowledge and models by passively monitoring
it. Such models describe the functional behaviours of the
system, and may serve for different purposes, e.g., testing of
a second production system. The latter can be a new system
roughly comparable to the first one in terms of features, but
it can also be an updated version of the first one. Indeed,
upgrades might inadvertently introduce or create faults, and
could lead to severe damages. In this context, testing the
updated system means detecting potential regressions before
deploying changes in production.

Models are inferred from an existing system under anal-
ysis. Many model inference methods have been previously
proposed in the literature [1], [2], [3], [4], [5], [6], but most
of them build over-approximated models, i.e. models captur-
ing the behaviours of a system and more. In our context, we
want exact models that could be used for testing. Most of
these approaches perform active testing on systems to learn
models. However, applying active testing on production
systems is not possible since these must not be disrupted.
Last but not least, few approaches can take huge amounts
of information to build models. Here, we propose a model
inference engine, which can take millions of production
messages in order to quickly build exact models. To do so,
we use different techniques such as data mining and formal
models. Production messages are filtered and segmented into
several sets of traces (sequences of observed actions). These
sets are then translated into Symbolic Transition Systems
(STS) [7]. However, such STSs are too large to be used in
practice. That is why these models are reduced in terms of
state number while keeping the same level of abstraction
and exactness.

After that, we leverage this model inference approach
to perform offline passive testing. A passive tester (a.k.a.



observer) aims at checking whether a system under test
conforms to an inferred model in offline mode. Offline
testing means that a set of traces has been collected while
the system is running. Then, the tester gives verdicts. We
collect the traces of the system under test by reusing some
parts of the model inference engine, and we build a set of
traces with the same level of abstraction as those considered
for inferring models. Then, we use these traces to check
if the system under test conforms to the inferred models.
Conformance is defined with two implementation relations,
which express precisely what the system under test should
do. The first relation corresponds to the trace preoder [8],
which is a well-known relation based upon trace inclusion,
and heavily used with passive testing. Nevertheless, our
inferred models are partials, i.e. they do not necessarily
capture all the possible behaviours that should happen. That
is why we propose a second implementation relation, less
restrictive on the traces that should be observed from the
system under test.

The paper is structured as follows: Section II discusses re-
lated work in model inference and fault detection. Section III
explains our choices regarding the design of our approach.
The model inference engine is described in Section IV,
following by Section V, which presents our passive testing
method. An evaluation is given in Section VI. Finally, we
draw conclusions in Section VII.

II. RELATED WORK

Several papers dealing with model generation and testing
approaches were issued in the last decade. We present here
some of them related to our work, and introduce some key
observations.

Model inference from traces: this first category gathers
approaches based upon algorithms that either merge a given
set of traces into transitions [9], [10], or merge concrete
states together with invariants [11]. Such techniques have
been employed to analyse log files [12], and to retrieve
information to identify failure causes [10], [13]. The ap-
proach of Mariani et al. derives general and compact models
from logs recorded during legal executions, in the form of
over-approximated finite state automata, using the kBehavior
algorithm [14]. Recently, Tonella et al. [3] proposed to use
genetic algorithms for inferring both the state abstraction
and the finite state models based on such abstractions.
The approach incrementally uses a combination of invariant
inference and genetic algorithms to optimize the state ab-
straction, and rebuild models along with quality attributes,
e.g., the model size.

White-box testing: many works were proposed to infer
specifications from source code or APIs [15], [16]. Specifica-
tions are inferred in [16] from correct method call sequences
on multiple related objects by pre-processing method traces
to identify small sets of related objects and method calls

which can be analysed separately. This approach is imple-
mented in a tool which supports more than 240 million
runtime events. On the other hand, other methods [17],
[18] focus on Mobile and Web applications. They rely upon
concolic testing to explore symbolic execution paths of an
application and to detect bugs. These white-box approaches
theoretically offer good code coverage. However, the number
of paths being explored concretely limits to short paths only.
Furthermore, the constraints must not be too complex for
being solved.

Black-box automatic testing: several other methods
[1], [6] were proposed to build models from event-driven
applications seen as black-boxes, e.g., Desktop, Web and
more recently Mobile applications. Such applications have
GUIs to interact with users and which respond to user
input sequences. Automatic testing methods are applied to
experiment such applications through their GUIs to learn
models. For instance, Memon et al. [1] introduced the
tool GUITAR for scanning Desktop applications. This tool
produces event flow graphs and trees showing the GUI exe-
cution behaviours. To prevent from a state space explosion,
these approaches [1], [6] require state-abstractions specified
by the users, given in a high level of abstraction. This
decision is particularly suitable for comprehension aid, but
these models often lack information for test case generation.

Active learning: the L£* algorithm [19] is still widely
considered with active learning methods for generating finite
state machines [4], [S]. The learning algorithm is used in
conjunction with a testing approach to learn models, and to
guide the generation of user input sequences based on the
model. The testing engine aims at interacting with the appli-
cation under test to discover new application states, and to
build a model accordingly. If an input sequence contradicts
the learned model, the learning algorithm rebuilds a new
model that meets all the previous scenarios.

Based on these works, we concluded that active methods
cannot be applied on production systems that cannot be
reset, and that should not be disrupted. In our context, we
only assume having a set of messages passively collected.
Furthermore, the message set may be vast. We observed that
most of the previous methods are not tailored for supporting
large scale systems and thus millions of messages. Only a
few of them, e.g., [16], can take huge message sets as input
and still infer models quickly. Likewise, the previous tech-
niques often leave aside the notion of correctness regarding
the learned models, i.e. whether these models only express
the observed behaviours or more. The approaches [4], [5]
based upon the £* learning algorithm [19] do not aim at
yielding exact models. [1], [6], [10] use abstraction mecha-
nisms that represent more behaviours than those observed.
In the case of production systems, it is highly probable that
executing incorrect test cases can bring false positives out as
highlighted in [10], and it may even lead to severe damages
on the devices themselves.



That is why we propose a framework that aims at inferring
models from collected messages in order to perform testing
as in [16], [10], but similarities end here. We focus on a fast,
exact, and formal model generation. The resulting models
are reduced to be used in practice. The testing engine makes
use of the model inference engine to build complete traces
from a system under test, and relies on the reduced models
to quickly provide test verdicts.

III. OVERVIEW OF THE FRAMEWORK

Our industrial partner needs a framework for testing new
or updated production systems, in the long term, without
disturbing them, and without having up to date and complete
specifications. We came up to the conclusion that a solution
would be to first infer models from an existing system, and
then to apply a passive testing technique, which relies upon
the previous models, on another system. To infer models, we
chose to take the production messages exchanged among all
devices as input since these are not tied to any programming
language or framework, and these messages contain all
information needed to understand how a whole industrial
system behaves in production. All these messages are here
collected by listening to the network of the production
system.

This context leads to some assumptions that have been
considered to design our framework:

e Black-box systems: production systems are seen as
black-boxes from which large sets of production mes-
sages can be passively collected. Such systems are
compound of production lines fragmented into several
devices and sensors. Hence, a production system can
have several entry and exit points. In this paper, we
denote such a system with SUA (System under analy-
sis). Another system is used for testing purpose and is
denoted with SUT (System under test),

e Production messages: a message is seen as a valued
action of the form a(«) which must include a distinctive
label a along with parameter assignments «. Two
actions a(«1) and a(as) having the same label a must
have assignments over the same parameter set,

e Traces identification: traces are sequences of actions
ai(aq)...an(ay,). A trace is identified by a specific
parameter that is included in all message assignments
of the trace. In this paper, this (product) identifier is
denoted with pid and identifies products, e.g., tires at
Michelin.

Our approach can be applied to any kind of production
system that meets the above assumptions. Nonetheless, it is
manifest that a preliminary evaluation on the system has to
be done to establish:

1) how to parse production messages. At Michelin, mes-
sages are exchanged in a binary format and need to
be deserialized before being exploited,

2) the rules for message filtering as some messages may
not be relevant,

3) the name of the identifier parameter in the production
messages.
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Figure 1. Autofunk’s overall architecture

Figure 1 depicts our framework named Autofunk, which
is split into two components. The first one infers models
that represent the functional behaviours of a system under
analysis SUA. We have chosen Symbolic Transition Systems
(STS) as models since these are known as very general and
powerful formal models for describing several aspects of
event-based systems.

Autofunk model generator is mainly framed upon an
inference engine to lift in abstraction the production mes-
sages, and to build STSs by means of successive trans-
formations. Human expert knowledge has been transcribed
with inference rules following this pattern: When condition,
Then action(s). These help filter and format production
messages thanks to fine-tuned rules given by human experts.
A machine learning technique is then used to automati-
cally remove partial behaviours, and to cluster production
messages into the trace sets ST1, ..., ST,, one set for each
entry point of the system. Next, it infers the model 8, which
corresponds to the list of STSs 8 = {8, ..., 8, }, from these
trace sets by means of STS based inference rules. Last but
not least, the STSs are reduced in size to be more easily
manipulated. Indeed, the first STSs may include thousands
and thousands of locations, which may lead to a state space
explosion problem when using them for testing.

The second part of Autofunk takes production messages
as input from another system under test SUT, and checks
whether SUT conforms with SUA. We propose two im-



plementation relations to define the notion of conformance
between the observable behaviours of SUA with those of
SUT.

In the next section, we briefly recall how STS models
are inferred by Autofunk, since this part has already been
presented in [20]. Then, we detail the passive testing com-
ponent.

IV. MODEL INFERENCE FOR INDUSTRIAL SYSTEMS

Given a system SUA and a set of production messages,
Autofunk builds the model 8 = {81, ...,8,} such that each
8; is an exact model describing the functional behaviours of
a production line in the system SUA.

A. Models as STS

Before introducing the model inference module of Auto-
funk, we briefly give some definitions related to the STS
model below, but we refer to [7] for a more extensive
description.

Definition 1 (Variable assignment) We assume that there
exist a domain of values denoted D and a variable set X
taking values in D. The assignment of variables in Y C X
to elements of D is denoted with a mapping o :' Y — D.
a(z) denotes the assignment of the variable x to a value in
D.

Definition 2 (STS) A Symbolic Transition System (STS)
consists of locations and transitions between locations. It
is defined as a tuple < L,ly,V,Vy, I, N, —>, where:

o STSs do not have states but locations (a.k.a. symbolic
states), and L is the finite location set, with ly being
the initial one,

o V is the finite set of internal variables, while I is
the finite set of parameters. The internal variables are
initialised with the condition Vy on V,

o A is the finite set of symbolic actions a(p) (a being
a symbol), with p = (p1,...,pr) a finite set of
parameters in I*(k € N),

e — is the finite set of symbolic transitions. A symbolic

transition t = (1;,1;, a(p), G, A), from the location [; €

Ltol; € L also denoted l; 2% 1, is labelled

by:
— an action a(p) € A,
— a guard G over (pU V'), which restricts the firing
of the transition. We consider guards written as
conjunctions of equalities: /\ (x == val),

. . zclUuV .
— an assignment A which defines the evolution of
the proper variables, A, being the function in A
defining the evolution of the variable x € V.

Notation: we also denote Proj,(G) the projection of the
guard G over the variable x € I UV, which extracts the

equality (x == wval) from G. For example, given the guard
G1 = [nsys == 1 Ansec == 8 Apoint == 1 Apid == 1],
Projnsys(G1) = (nsys == 1). For readability purpose, if
A is the identity function idy, we denote a transition with
I; a(p),G

= to represent STS paths: [ =def
Aoyl =l St I, =1

A STS is also associated with a LTS (Labelled Transition
System) to formulate its semantics. The LTS semantics
corresponds to a valued automaton without any symbolic
variables, which is often infinite: the LTS states are la-
belled by internal variable assignments, and transitions are
labelled by actions associated with parameter assignments.
The semantics of a STS 8§ =< L,10,V,V0,1,A,—> is the
LTS ||8|| =< @, q0, >, —> composed of valued states in
Q =L x D, go = (10,V0) is the initial one, > _ is the set

of valued symbols, and — is the transition relation.
.. .. ,GLA .
Intuitively, for a STS transition [y L {5, we obtain

a LTS transition (1, v) @e, (I3,v") with v an assignment

over the internal variable set if there exists a parameter value
set o such that the guard G evaluates to true with vUa. Once
the transition is fired, the internal variables are assigned with
v" derived from the assignment A(v U «).

Finally, runs and traces, which represent executions and
event sequences, can also be derived from LTS semantics:

l;. We also use the generalised transition relation
(a1,G1,A1)...(an,Gn,An

Ly

an,Gn,An
—mInny

Definition 3 (Runs and traces) Given a STS 8§ = < L, g,
V. Vo, I, A, —>, interpreted by its LTS semantics ||S|| =<
Q,qo,z,%% a run qooy...0n—1qy IS an alternate se-
quence of states and valued actions. Run(8) = Run(]|8|)
is the set of runs found in ||§||.

It follows that a trace of a run r is defined as
the projection projs~(r) on the actions. Tracesp(8) =
Tracesp(||8||), with F C L is the set of traces of all runs
finished by states in F' x D.

We are now ready to present the different steps to infer
models from an industrial system SUA. More details are
available in [20].

B. Production messages and traces

Autofunk takes production messages as input from a
system under analysis SUA. A production message is mainly
compound of a label along with kinds of variable assign-
ments. An example of messages is given in Figure 2. For
instance, 17011 is a label and [point : 1] can be seen as a
variable assignment.

Production messages are transformed no matter their
initial source, so that it is possible to use data from dif-
ferent providers. To avoid disrupting the (running) system
under analysis SUA, we do not instrument the production
equipments composing the whole system. Everything is done
offline with a logging system or with monitoring. Production



1 17—Jun —2014 23:29:59 .00|INFO|New File

3 17—Jun—2014 23:29:59.50|17011|MSG_IN [nsys: 1] [nsec:

8] [point: 1] [pid: 1]
5 17—Jun —2014 23:29:59.61|17021|MSG_OUT [nsys: 1] [nsec:
8] [point: 3] [tpoint: 8] [pid: 1]

7 17—Jun —2014 23:29:59.70|17011|MSG_IN
8] [point: 2] [pid: 2]

[nsys: 1] [nsec:

9 17—Jun —2014 23:29:59.92|17021|MSG_OUT [nsys: 1] [nsec:
8] [point: 4] [tpoint: 9] [pid: 2]

Figure 2. An example of production messages

messages are then formatted, filtered, and reconstructed as
traces by means of inference rules. A trace represents the
behaviour observed from SUA against one product, i.e. tires
in our context, which are numbered with an identifier pid.
We call the resulting trace set Traces(SUA):

Definition 4 (Production system traces) Given a system
under analysis SUA, Traces(SUA) denotes its format-
ted trace set. Traces(SUA) includes traces of the form
(a1,01) ... (an, an) such that (a;, ;) (1<i<n) are (ordered)
valued actions having the same identifier assignment over
the variable pid.

C. Trace segmentation and filtering

We define a complete trace as a trace containing all
valued actions expressing the path taken by a product in a
production system, from the beginning, i.e. one of its entry
points, to the end, i.e. one of its exit points. In the trace set
Traces(SUA), we do not want to keep incomplete traces,
i.e. traces that do not express entire behaviours of products
on production lines.

The trace set Traces(SUA) is analysed with a machine
learning technique to segment it into several subsets, one per
entry point of the system SUA. We leverage this process to
also remove incomplete traces, i.e. traces that do not express
an execution starting from an entry point and ending to an
exit point. These can be extracted by analysing the traces
and the variable point, which captures the product physical
location.

Definition 5 (Complete traces) Let SUA be a system un-
der analysis and Traces(SUA) be its trace set. A trace
t = ai1(or)...an(ay) € Traces(SUA) is said complete iff
aq includes an assignment point = vall, which denotes an
entry point of SUA, and o, includes an assignment point =
val2, which denotes an exit point. The complete traces of
SUA are denoted with CTraces(SUA) C Traces(SUA).

In order to determine both entry and exit points of SUA,
we rely on an outlier detection approach [21]. An outlier
is an observation which deviates so much from the other

observations as to arouse suspicions that it was generated by
a different mechanism. More precisely, we chose to use the
k-means clustering method, a machine learning algorithm,
which is both fast and efficient, and does not need to be
trained before being effectively used (that is called unsuper-
vised learning, and it is well-known in the machine learning
field). k-means clustering aims to partition n observations
into k clusters. Here, observations are represented by the
variable point present in each trace of Traces(SUA), which
captures the product physical location, and k = 2 as we want
to group the outliers together, and leave the other points in
another cluster. But, since we want to leverage the largest
part of the initial trace set, we apply k-means clustering
several times until reaching 80% of traces retained. Once the
entry and exit points are found, we segment Traces(SUA)
and obtain a set CTraces(SUA) = STy U--- U ST,.

D. STS generation

Given a trace set ST; C CTraces(SUA), the STS
generation is done by transforming traces into runs, and runs
into STSs. The translation of S7T; into a run set denoted
Runs; is done by completing traces with states. All the
runs of Runs; have states that are unique except for the
initial state (10, Vp) with Vo = () an initial empty condition.
We defined such a set to ease the process of building a STS
having a tree structure. Runs are transformed into STS paths
that are assembled together by means of a disjoint union. The
resulting STS forms a tree compound of branches starting
from the location /0. Parameters and guards are extracted
from the assignments found in valued actions. Considering
the complete trace sets CTraces(SUA) = STy U---UST,,
we obtain the model 8§ = {81,...,8,}.

Rather than giving the formal transformation of trace
sets into STSs (we refer to [20]), we propose to show
its functioning with the example of Figure 2. Production
messages are translated into the following complete traces:

CTraces(SUA) = {(17011(nsys = 1,nsec =
8,point = 1,pid = 1) 17021 (nsys = 1, nsec = 8, point =
3, tpoint = 8,pid = 1)), (17011(nsys = 1,nsec =
8, point = 2, pid = 2) 17021 (nsys = 1, nsec = 8, point =
4,tpoint = 9, pid = 2))}.

These traces are then transformed into runs by injecting
new states between the valued actions, except for the initial
state (10, V), which is unique. Variable assignments are
translated into guards that are conjunctions of equalities, and
STS locations are derived from states. We obtain the STS of
Figure 3, which includes all the labels and assignments of
the original production messages. One can also notice that
such a STS is not an approximation as each of its paths
captures an execution of SUA.

E. STS reduction

The STS models 8; of 8§ = {84,...,8,}, are usually too
large, and thus cannot be beneficial as is. That is why our



17011 (nsys,nsec,point,pid)
Gl=[nsys==1lsnsec==8 »
point==1.pid==1]

17011insys,nsec,point,pid)
G3=[nsys==lsnsec==8x
point==2 pid==2]

17021 (nsys,nsec,point,tpoint,pid)
Ga=[nsys==1:.nsec==8 »
point==4 stpoint==9,pid==2]

17021(nsys,nsec,point,tpoint,pid)
G2=[nsys==1.nsec==8 »
point==3stpoint==8 Apid==1]

Figure 3. First generated model (STS)

framework adds a reduction step, aiming at diminishing the
first model into a second one, denoted R(S;) that will be
more usable.

This step can be seen as a formal classification method
(data mining) which consists in combining STS paths that
have the same sequences of STS actions, so that we still
obtain a model having a tree structure. When paths are
combined together, parameter assignments are wrapped into
matrices in such a way that trace equivalence between the
first model and the new one is preserved. The use of matrices
offers another advantage: the parameter assignments are now
packed into a structure that can be more easily analysed or
leveraged later on.

Given a STS §;, this adaptation is achieved by two steps.
Every path of §; is adapted to express sequences of guards
in a vector form. Then, the concatenation of these vectors
gives birth to matrices. The first step is done by means of
the STS operator Mat. For simplicity purpose, we do not
provide the definition here, but we refer to [20]. In short,
for each path b of §;, this operator collects the list of guards
(G,...,Gy,) found in the transitions of b, and stores it in
a vector denoted Mat(b). It results in a new STS Mat(8;)

composed of transitions of the form [ —~ (ps) Mat®)lil s, 1.
Thereafter, the STS paths of Mat(8;), which have the
same sequences of actions, are assembled: these paths can
be recognised by means of an equivalence relation over STS
paths from which equivalence classes can be derived:

Definition 6 (STS path equivalence class) Ler §; =<
Ls,,10s,,Vs,,VO0s,, Is,, As,, —s,> be a STS obtained from
CTraces(SUA) and having a tree structure. [b] denotes the
equivalence class of paths of 8; such that:

[b] _ {b _ lOS (al(p1)7GIjaAlj)---(am(IMn)»ij7Am,j)
= i = P

lmj(j > 1) € (—s,)™ | b=10s,
(al(pl)levAl)---(am(pm)-,Gm,Am)

b }

The reduced STS denoted R(S;) of 8; is finally obtained
by concatenating all the paths of each equivalence class [b]
found in Mat(8;) into a single path. The vectors found in
the paths of [b] are concatenated as well into the same unique
matrix M. A column of this matrix represents a complete

W0=M[b]=[G1G3].1 = clb] <2 | MIb]
o [G2 G4] Gl G3

sys==1ansec==8a
point==1.pid==1

G2 G4

sys==lansec==8x

17011 (nsys ,nsec,point,pid
(nsys.nsec, point,pid) point==2spid==2

Mib]lc[b], 1]

sys==1ansec==8x sys==lansec==8x
point==3.tpoint==8+ point==4,tpoint==9,
pid==1 pid==2

1702 1(nsys,nsec,point tpoint,pid)

Mb]lc[b],2]

Figure 4. Reduced model (STS)

and ordered sequence of guards found in one initial path of
8i. R(8;) is defined as follows:

Definition 7 Ler §; =< Ls,,10s,,Vs,,V0s,,Is,,As,,
—s,> be a STS inferred from a structured trace set
Traces(SUA). The reduction of 8; is modelled by the STS
R(SZ) =< Lg, ZOR, Vg, VOg, IR, AR, —Rr> where:

o I0r = 0nras(s;), IR = Intat(s) Ar = Anrascs,)

e Lp,Vr,VOg,—r are defined by the following infer-

ence rule:
0] = {b1,...,bm}

b =10, (a1(p1),G11,411)---(an (Pn),Gn1,An1) Mat(8:) I,
VOg :=VO0g A My = [Mat(by), ..., Mat(by,)|A
(1 <cp <m),

(a1(p1), M) [L,cp)]sidv ). (an (P ), Mp) [0, cpp)] idv )
lOR —R
(1. lum)

A column of the matrix M, represents a successive list
of guards found in a path of the initial STS §;. The choice
of the column in a matrix depends on a new variable cf.
The STS R(S;) has less paths but still expresses the initial
behaviours described by the STS §;. This is captured with
the following proposition:

Proposition 8 Ler SUA be a system under analysis and
Traces(SU A) be its traces set. R(8;) is a STS derived from
Traces(SUA). We have Traces(R(8;)) = Traces(ST;) C
Traces(SUA).

We obtain the model R(8) = {R(81), ..., R(Sy)}. Figure
4 depicts the reduced model obtained from the STS of Figure
3. Now we have only one path where guards are packed into
one matrix M.

F. STS normalisation

Both models 8 and R(8) include parameters that are
dependent to the products being manufactured. That is a
consequence of generating models that describe behaviours
of a continuous stream of products which are strictly iden-
tified, i.e. for each action in a given sequence, we have the
assignment (pid = val) (pid stands for product identifier).



Here, we normalise these models before using them for test-
ing. The resulting models are denoted with 8V and R(8V).
In short, we remove the assignments relative to product
identifiers and timestamps (not present in the example).
Furthermore, we label all the final locations with ”Pass”. We
denote these locations as verdict locations and gather them
in the set Pass C Lgn. Both 8" and R(8") represent more
generic models, i.e. they express some possible behaviours
that should happen. These behaviours are represented by
the traces Tracespqss(8Y) = U TracesPass(SfV) =
1<i<n

Tracespass(R(SM)).

We refer to these traces as pass traces. We call the other
traces possibly fail traces.

V. OFFLINE PASSIVE TESTING

We consider both models 8V and R(8") of a system un-
der analysis SUA, generated by our inference-based model
generation framework, as reference models. In this section,
we present the second part of our framework, dedicated to
the passive testing of a system under test SUT. As depicted
in Figure 1, the passive testing of SUT is performed
offline, i.e. a set of production messages has been collected
beforehand from SUT, in the same way as for SUA. These
are grouped into traces to form the trace set Traces(SUT).
The latter is filtered as described in Section IV-C to obtain
a set of complete traces denoted with CTraces(SUT). We
then perform passive testing to check if SUT conforms
to 8V. Below, we define conformance with implementation
relations, and provide a passive testing algorithm that aims
to check whether these relations hold.

A. Implementation relations and verdicts

Our industrial partner wishes to check whether every
complete execution trace of SUT matches a behaviour
captured by 8V. In this case, the test verdict must reflect
a successful result. On the contrary, if an execution of SUT
is not captured by 8V, one cannot conclude that SUT
is faulty because 8V is a partial model, and it does not
necessarily includes all the correct behaviours. Below, we
formalise theses verdict notions with two implementation
relations. Such relations between models can only be written
by assuming the following classical test assumption: the
black-box system SUT can be described by a model, here
with a LTS (see Definition 2). We also denote this model
with SUT.

The first implementation relation, denoted with <., refers
to the trace preorder relation [8]. It aims at checking whether
all the complete execution traces of SUT are pass traces of
SN = {8V, ...,8N}. The first implementation relation can
be written with:

Definition 9 Let 8" be an inferred model of SUA and SUT
be the system under test. When SUT produces complete

traces also captured by 8V, we write:
SUT <. 8V =gdef CTraces(SUT) C Tracespass(8Y)

Pragmatically, the reduced model R(S8") sounds more
convenient for passively testing SUT since it is strongly
reduced in terms of size compared to 8. The test relation
can also be written as below since both models 8" and
R(8™) are trace equivalent (Proposition 8):

Proposition 10 SUT <.
Tracespass(R(SN))

SN iff CTraces(SUT) C

As stated previously, the inferred model SV of SUA
is partial, and might not capture all the behaviours that
should happen on SUT. Consequently, our partner wants
a weaker implementation relation, which is less restrictive
on the traces that should be observed from SUT. Intuitively,
this second relation aims to check that, for every complete
trace t = aj(aq)...am(ayy,) of SUT, we also have a set
of traces of Tracesp,ss(8") having the same sequence of
symbols such that every variable assignment o () (1< j<m)
of t is found in one of the traces of Tracespass(S8Y)
with the same symbol a;. If we take back the example
of Figure 3, the trace ¢ = (17011(nsys = 1,nsec =
8, point = 1,pid = 1) 17021 (nsys = 1, nsec = 8, point =
4,tpoint = 9,pid = 1) is not a pass trace of 8" because
this trace cannot be extracted from one of the paths of the
STS of Figure 3, on account of the variables point and
tpoint, which do not take the expected values. However,
both variables are assigned with point = 4,tpoint = 9
in the second path. This is interesting as it indicates that
such values may be correct since they are actually used
in a similar action in a similar path. Here, the second
implementation relation aims at expressing that this trace
t captures a correct behaviour as well.

This implementation relation, denoted with <,,,;, is writ-
ten with:

Definition 11 Let 8V be an inferred model of SUA
and SUT be the system under test. We denote
SUT  <pet sV =def Vi = al(al)...am(ozm) €
CTraces(SUT),Va;(z)(1<j<m), Y € 8N andt' €
Tracespass(8Y) such that ' = ai())...am(cl,) and
) (x) = ()

In the following, we rewrite this relation in an equivalent
but simpler form. According to the above definition, the
successive symbols and variable assignments of a trace
t € CTraces(SUT) must be found into several traces
of Tracespass(SY), which have the same sequence of
symbols aj...an, as the trace t. The reduced model R(SY)
was previously constructed to capture all these traces in
Tracespqss(8Y), having the same sequence of symbols.
Indeed, given a STS 8%, all the STS paths of 8V, which

)



have the same sequence of symbols labelled on the transi-
tions, are compacted into one STS path b in R(S)V) whose
transition guards are stored into a matrix M. Given a trace
ai(a)...am(am) € CTraces(SUT) and a STS path b of
R(8N) having the same sequence of symbols a;...a,,, the
relation can be now formulated as follows: for every valued
action a;(c;), each variable assignment «; () must satisfies
at least one of the guards of the matrix line j in Mp,[j, *].

The implementation relation <,,.; can then be written
with:

Proposition 12 SUT <,,.; 8V iff Vt = a1(ay)...am(am)
€ CTraces(SUT),3R(8N) € R(8N) and b = 0Resy)
(a1(p1), Mp)[L,cp)]), -, (a; (p;), M ld,cp)])

lm
with (1 < cp) < k) such that Vo (z)(1 < j <m),a;(z) =
M[b] 7,1 V..V M[b] [7, k] and l,,, € Pass

The disjunction of guards Mp[j,1] V ... V. M[j, k],
found in the matrix M, could be simplified by gathering
all the equalities * == wal together with disjunctions
for every variable x that belongs to the parameter set p;.
Such equalities can be extracted with the Proj operator (see
Definition 2). We obtain one guard of the form A, ep; (x ==
valy V ... V o == valy). The STS D(8Y), derived from
R(8N), is constructed with this simplification of guards:

Definition 13 Let R(SY) =< Lg,I0r, Vg, VOg, Ir, AR,
—gr> be a STS of R(8N). We denote D(SY) the STS
< Lp,0p,Vp,VOp,Ip,Ap,—p> derived from R(SN)
such that:

e Lp=Lg,I0p =10, Ip =Ir,Ap = Ag,

e Vp,VOp and — p are given by the following inference

rule:
a M ,C coi(am (pm), My [m,c
b=10p (a1(p1), M) [L,cpp)])-- - (@m (Pm ), Mp) [m,cpp] ol
(1< Clb) <k)inVOgr
(al(pl)Jwb[l])“'(am(pm):Mb[mD
0p -

VOp =V0p A My, Mb[j, 1](1§j§m) =
I\ (Proju(My[j, 1)) V - - V Proj.(My[j, k)

TEP;

D(8N) denotes the model {D(8Y), ..., D(SN)}.

n

The second implementation relation <,,.; can now be
expressed by:

Proposition 14 SUT <,,.; 8V iff ¥t = a1(ay)...am(am)
€ CTraces(SUT),3D(8N) € D(8Y) and I0p sy
(al(pl)7G1)7---7(a7n(pm)7G7nz ’

lm such that Vo;(1 < j <
m),o; = Gj and 1, € Pass.

<emt now means that a trace of SUT must also be a
pass trace of the model D(8Y) = (D(8Y),..., D(8N)).

Furthermore, this notion of trace inclusion can be formulated
with the first implementation relation <., as follows:

Proposition 15 SUT <,,.; 8" iff CTraces(SUT) C
Tracespass(D(8Y))
SUT < et 8N & SUT <. D(8Y)

The implementation relation <,,.; is now expressed with
the first relation <.;, which implies that our passive testing
algorithm shall be the same for both relations but shall take
different reference models.

B. Passive testing algorithm

The passive testing algorithm, which aims to check
whether the two previous implementation relations hold,
is given in Algorithm 1. It takes the complete traces of
SUT and the models R(8") and D(8"), with regards to
Propositions 10 and 15. It returns the verdict “Pass<.”
("Pass<,,.¢") if the relation <. is satisfied (<, respec-
tively).

It relies upon the function checktrace(trace t, STS S) to
check whether the trace ¢ = a1 (aq)...am () is also a trace
of the STS S. If a STS path b is composed of the same
sequence of symbols as the trace ¢, the function tries to find
a matrix column M = Mjp,[*,i] such that every variable
assignment «v; satisfies the guard M{j]. If such a column of
guards exists, the function returns True, and False otherwise.

Algorithm 1 covers every trace ¢t of CTraces(SUT) and
tries to find a STS R(8Y) such that ¢ is also a trace of R(SV)
with check(t, R(8Y)). If no model R(8Y) has been found,
the trace ¢ is placed into the set 77. T} gathers the possibly
fail traces w.r.t. <.,. Thereafter, the algorithm performs the
same step but on the STS D(8"V). One more time, if no
model D(8Y) has been found, the trace ¢ is placed into the
set T5. The latter gathers the possibly fail traces, w.r.t. the
relation <,,,c¢.

Finally, if T is empty, the verdict "Pass<.;” is returned,
which means that the first implementation relation holds.
Otherwise, 77 is provided. If 75 is empty, the verdict
”Pass<,,.: is returned, or 715 in the other case.

When one of the implementation relations does not hold,
this algorithm offers the advantage to provide the possibly
fail traces of CTraces(SUT). Such traces can be later
analysed to check if SUT is correct or not. That is helpful
for Michelin engineers as it allows them to only focus on
what are potentially faulty behaviours, reducing debugging
time, and making engineers more efficient.

VI. EVALUATION

We conducted several experiments with real sets of pro-
duction messages, recorded in one of Michelin’s factories at
different periods of time. We executed our implementation
on a Linux (Debian) machine with 12 Intel(R) Xeon(R) CPU
X5660 @ 2.8GHz and 64GB RAM.



Algorithm 1: Passive testing algorithm
input : R(8Y) = {R(81), ..., R(8))}, D(8N) =

v

{D(8Y), ..., D(8Y)}, CTraces(SUT)
output: Verdits or possibly fail trace sets T, T>

1 Tl = TQ = (0,

2 foreacht € CTraces(SUT) do

3 foreachi € 1,...,n do

4 | if check (¢, R(SY)) then break ;
5 if ¢ == n then

6 T, =T U {t}

7 foreachi € 1,...,n do

8 | ifcheck (t, D(SYY)) then break ;
9 if 2 == n then T2:T2U{t};
10 if Ty == 0 then return "Pass<..";

1 else return T ;

12 if To == () then return "Pass<,,.:";
13 else return 75;

14 Function check(trace t, STS S ) : bool is
(a1(r1),G1,41)..-(an(Pn),Gn,An)

15 if 3b = 10g In|trace =
(a1,1),...,(an,ay) and l,, € Pass then

16 M) = Mat(b) is the Matrix & x m of b;

17 1 =1;

18 while i < m do

19 M = M[b] [*, i];

20 foreach j € 1,...,n do

21 | ifa; = M[j] then break ;

22 if j == n then return T'rue ;

23 i+ 4+

24 return False;

We present, in Figure 5, the results of several experiments
on the same production system with different trace sets,
recorded at different periods of time. We focus on the
passive testing component here, but one can find an extensive
evaluation on the model inference part in [20]. The first
column shows the experiment number, columns 2 and 3
respectively give the sizes of the trace sets of the system
under analysis SUA and of the system under test SUT. The
two next columns show the percentage of pass traces w.r.t
the relations <. and <,,.. The last column indicates the
execution time for the testing phase.

In Experiment 1, we decided to use the same production
messages for both inferring models, i.e. specifications, and
testing. This experiment shows that our implementation
behaves correctly when trace sets are similar, i.e. when
behaviours of both SUA and SUT are equivalent.
Experiment 2 has been run with traces of SUT that are
older than those of SUA, which is unusual as the de facto
usage of our framework is to build specifications from a
production system SUA, and to take a newer or updated
system as SUT. Here, only 30% of the traces of SUT are
pass traces w.r.t. the second implementation relation (same
sequence of symbols with different values). There are two
explanations: the system has been updated between the two
periods of record (4 months), and production campaigns, i.e.
grouping of planned orders and process orders to produce
a certain amount of products over a certain period of time,

were different (revealed by Autofunk, indicating that values
for some key parameters were unknown).

Finally, experiment 3 shows good results as the specification
models are rich enough, i.e. built from a larger set of
traces (10 days) than the one collected on SUT. Such an
experiment is a typical usage of our framework at Michelin.
The traces of SUT have been collected for 5 days, and it
took only 10 minutes to check conformance. While 98%
of the traces are pass traces, the remaining 2% are new
behaviours that never occured before. Such information is
essential for Michelin engineers to determine the root causes.
Even though 2% may represent a large set to analyse,
Autofunk improves their work by highlighting the traces to
focus on. Such subset may contain false positives depending
on the richness of the models, but using large sets of traces
to build the models reduces the number of false positives.

VII. CONCLUSION

This paper presents Autofunk, a fast passive testing frame-
work combining different fields such as model inference,
expert systems, and machine learning. First, given a large set
of production messages, our framework infers exact models
whose traces are included in the initial trace set of a system
under analysis. Such models are then reused as specifications
to perform offline passive testing, using a second set of traces
recorded on a system under test. Using two implementation
relations, Autofunk is able to determine what has changed
between the two systems. This is particularly useful for our
industrial partner Michelin since potential regressions can
be detected while deploying changes in production. Initial
results are encouraging, and Michelin engineers see a real
potential in this framework.

Technical improvements put aside, we plan to work on
online passive testing in the future, enabling just-in-time
fault detection. In short, we plan to record traces on a
system under test on the fly, and to check whether those
traces satisfy specifications still generated from a system
under analysis. One additional need, directly related to
our industrial partner Michelin, is to be able to focus on
specific locations of a workshop, rather than on the whole
workshop, because some parts are more critical than others.
The combination of both enhancements on our framework
should bring significant improvements to end users.
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